440 research outputs found

    Shifting Attention From Theory to Practice in Philosophy of Biology

    Get PDF
    Traditional approaches in philosophy of biology focus attention on biological concepts, explanations, and theories, on evidential support and inter-theoretical relations. Newer approaches shift attention from concepts to conceptual practices, from theories to practices of theorizing, and from theoretical reduction to reductive retooling. In this article, I describe the shift from theory-focused to practice-centered philosophy of science and explain how it is leading philosophers to abandon fundamentalist assumptions associated with traditional approaches in philosophy of science and to embrace scientific pluralism. This article comes in three parts, each illustrating the shift from theory-focused to practice-centered epistemology. The first illustration shows how shifting philosophical attention to conceptual practice reveals how molecular biologists succeed in identifying coherent causal strands within systems of bewildering complexity. The second illustration suggests that analyzing how a multiplicity of alternative models function in practice provides an illuminating approach for understanding the nature of theoretical knowledge in evolutionary biology. The third illustration demonstrates how framing reductionism in terms of the reductive retooling of practice offers an informative perspective for understanding why putting DNA at the center of biological research has been incredibly productive throughout much of biology. Each illustration begins by describing how traditional theory-focused philosophical approaches are laden with fundamentalist assumptions and then proceeds to show that shifting attention to practice undermines these assumptions and motivates a philosophy of scientific pluralism

    Exploring modularity in biological networks

    Get PDF
    Network theoretical approaches have shaped our understanding of many different kinds of biological modularity. This essay makes the case that to capture these contributions, it is useful to think about the role of network models in exploratory research. The overall point is that it is possible to provide a systematic analysis of the exploratory functions of network models in bioscientific research. Using two examples from molecular and developmental biology, I argue that often the same modelling approach can perform one or more exploratory functions, such as introducing new directions of research, offering a complementary set of concepts, methods and algorithms for individuating important features of natural phenomena, generating proofs of principle demonstrations and potential explanations for phenomena of interest and enlarging the scope of certain research agendas. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'

    Has classical gene position been practically reduced?

    Get PDF
    One of the defining features of the classical gene was its position (a band in the chromosome). In molecular genetics, positions are defined instead as nucleotide numbers and there is no clear correspondence with its classical counterpart. However, the classical gene position did not simply disappear with the development of the molecular approach, but survived in the lab associated to different genetic practices. The survival of classical gene position would illustrate Waters’ view about the practical persistence of the genetic approach beyond reductionism and anti-reductionist claims. We show instead that at the level of laboratory practices there are also reductive processes, operating through the rise and fall of different techniques. Molecular markers made the concept of classical gene position practically dispensable, leading us to rethink whether it had any causal role or was just a mere heuristi

    Skillful long-range prediction of European and North American winters

    Get PDF
    This is the final version. Available from AGU via the DOI in this recordUntil recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. Key Points The winter NAO can be skilfully predicted months ahead The signal-to-noise ratio of the predictable signal is anomalously low Predictions of the risk of regional winter extremes are possibleThis work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), the UK Public Weather Service research program, and the European Union Framework 7 SPECS project. Leon Hermanson was funded as part of his Research Fellowship by Willis as part of Willis Research Network (WRN)

    Gene expression profiling reveals differential effects of sodium selenite, selenomethionine, and yeast-derived selenium in the mouse

    Get PDF
    The essential trace mineral selenium is an important determinant of oxidative stress susceptibility, with several studies showing an inverse relationship between selenium intake and cancer. Because different chemical forms of selenium have been reported to have varying bioactivity, there is a need for nutrigenomic studies that can comprehensively assess whether there are divergent effects at the molecular level. We examined the gene expression profiles associated with selenomethionine (SM), sodium selenite (SS), and yeast-derived selenium (YS) in the intestine, gastrocnemius, cerebral cortex, and liver of mice. Weanling mice were fed either a selenium-deficient (SD) diet (<0.01 mg/kg diet) or a diet supplemented with one of three selenium sources (1 mg/kg diet, as either SM, SS or YS) for 100 days. All forms of selenium were equally effective in activating standard measures of selenium status, including tissue selenium levels, expression of genes encoding selenoproteins (Gpx1 and Txnrd2), and increasing GPX1 enzyme activity. However, gene expression profiling revealed that SS and YS were similar (and distinct from SM) in both the expression pattern of individual genes and gene functional categories. Furthermore, only YS significantly reduced the expression of Gadd45b in all four tissues and also reduced GADD45B protein levels in liver. Taken together, these results show that gene expression profiling is a powerful technique capable of elucidating differences in the bioactivity of different forms of selenium

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
    corecore